A Japanese mathematician claims to have solved one of the most important problems in his field. The trouble is, hardly anyone can work out whether he’s right.
Sometime on the morning of 30 August 2012, Shinichi Mochizuki quietly posted four papers on his website.
The papers were huge — more than 500 pages in all — packed densely with symbols, and the culmination of more than a decade of solitary work. They also had the potential to be an academic bombshell. In them, Mochizuki claimed to have solved the abc conjecture, a 27-year-old problem in number theory that no other mathematician had even come close to solving. If his proof was correct, it would be one of the most astounding achievements of mathematics this century and would completely revolutionize the study of equations with whole numbers.
Mochizuki, however, did not make a fuss about his proof. The respected mathematician, who works at Kyoto University’s Research Institute for Mathematical Sciences (RIMS) in Japan, did not even announce his work to peers around the world. He simply posted the papers, and waited for the world to find out.
Probably the first person to notice the papers was Akio Tamagawa, a colleague of Mochizuki’s at RIMS. He, like other researchers, knew that Mochizuki had been working on the conjecture for years and had been finalizing his work. That same day, Tamagawa e-mailed the news to one of his collaborators, number theorist Ivan Fesenko of the University of Nottingham, UK. Fesenko immediately downloaded the papers and started to read. But he soon became “bewildered”, he says. “It was impossible to understand them.”
Fesenko e-mailed some top experts in Mochizuki’s field of arithmetic geometry, and word of the proof quickly spread. Within days, intense chatter began on mathematical blogs and online forums (see Nature http://doi.org/725; 2012). But for many researchers, early elation about the proof quickly turned to scepticism. Everyone — even those whose area of expertise was closest to Mochizuki’s — was just as flummoxed by the papers as Fesenko had been. To complete the proof, Mochizuki had invented a new branch of his discipline, one that is astonishingly abstract even by the standards of pure maths. “Looking at it, you feel a bit like you might be reading a paper from the future, or from outer space,” number theorist Jordan Ellenberg, of the University of Wisconsin–Madison, wrote on his blog a few days after the paper appeared.
Three years on, Mochizuki’s proof remains in mathematical limbo — neither debunked nor accepted by the wider community. Mochizuki has estimated that it would take a maths graduate student about 10 years to be able to understand his work, and Fesenko believes that it would take even an expert in arithmetic geometry some 500 hours. So far, only four mathematicians say that they have been able to read the entire proof.
Adding to the enigma is Mochizuki himself. He has so far lectured about his work only in Japan, in Japanese, and despite being fluent in English, he has declined invitations to talk about it elsewhere. He does not speak to journalists; several requests for an interview for this story went unanswered. Mochizuki has replied to e-mails from other mathematicians and been forthcoming to colleagues who have visited him, but his only public input has been sporadic posts on his website. In December 2014, he wrote that to understand his work, there was a “need for researchers to deactivate the thought patterns that they have installed in their brains and taken for granted for so many years”. To mathematician Lieven Le Bruyn of the University of Antwerp in Belgium, Mochizuki’s attitude sounds defiant. “Is it just me,” he wrote on his blog earlier this year, “or is Mochizuki really sticking up his middle finger to the mathematical community”.
Now, that community is attempting to sort the situation out. In December, the first workshop on the proof outside of Asia will take place in Oxford, UK. Mochizuki will not be there in person, but he is said to be willing to answer questions from the workshop through Skype. The organizers hope that the discussion will motivate more mathematicians to invest the time to familiarize themselves with his ideas — and potentially move the needle in Mochizuki’s favour.
In his latest verification report, Mochizuki wrote that the status of his theory with respect to arithmetic geometry “constitutes a sort of faithful miniature model of the status of pure mathematics in human society”. The trouble that he faces in communicating his abstract work to his own discipline mirrors the challenge that mathematicians as a whole often face in communicating their craft to the wider world.
Primal importance
The abc conjecture refers to numerical expressions of the type a + b = c. The statement, which comes in several slightly different versions, concerns the prime numbers that divide each of the quantities a, b and c. Every whole number, or integer, can be expressed in an essentially unique way as a product of prime numbers — those that cannot be further factored out into smaller whole numbers: for example, 15 = 3 × 5 or 84 = 2 × 2 × 3 × 7. In principle, the prime factors of a and bhave no connection to those of their sum, c. But the abc conjecture links them together. It presumes, roughly, that if a lot of small primes divide a and b then only a few, large ones divide c.
This possibility was first mentioned in 1985, in a rather off-hand remark about a particular class of equations by French mathematician Joseph Oesterlé during a talk in Germany. Sitting in the audience was David Masser, a fellow number theorist now at the University of Basel in Switzerland, who recognized the potential importance of the conjecture, and later publicized it in a more general form. It is now credited to both, and is often known as the Oesterlé–Masser conjecture.
“Looking at it, you feel a bit like you might be reading a paper from the future.”
A few years later, Noam Elkies, a mathematician at Harvard University in Cambridge, Massachusetts, realized that the abcconjecture, if true, would have profound implications for the study of equations concerning whole numbers — also known as Diophantine equations after Diophantus, the ancient-Greek mathematician who first studied them.
Elkies found that a proof of the abc conjecture would solve a huge collection of famous and unsolved Diophantine equations in one stroke. That is because it would put explicit bounds on the size of the solutions. For example, abc might show that all the solutions to an equation must be smaller than 100. To find those solutions, all one would have to do would be to plug in every number from 0 to 99 and calculate which ones work. Without abc, by contrast, there would be infinitely many numbers to plug in.
Posted by f.sheikh