Ditch the 10,000 hour rule!

 

By  AND 

Obsessive practice isn’t the key to success. Here’s why;

Here’s a study that may surprise you. A group of eight-year-olds practiced tossing beanbags into buckets in gym class. Half of the kids tossed into a bucket three feet away. The other half mixed it up by tossing into buckets two feet and four feet away. After twelve weeks of this they were all tested on tossing into a three-foot bucket. The kids who did the best by far were those who’d practiced on two- and four-foot buckets but never on three-foot buckets.

Why is this? We will come back to the beanbags, but first a little insight into a widely held myth about how we learn.

The Myth of Massed Practice

Most of us believe that learning is better when you go at something with single-minded purpose: the practice-practice-practice that’s supposed to burn a skill into memory. Faith in focused, repetitive practice of one thing at a time until we’ve got it nailed is pervasive among classroom teachers, athletes, corporate trainers, and students. Researchers call this kind of practice “massed,” and our faith rests in large part on the simple fact that when we do it, we can see it making a difference. Nevertheless, despite what our eyes tell us, this faith is misplaced.

If learning can be defined as picking up new knowledge or skills and being able to apply them later, then how quickly you pick something up is only part of the story. Is it still there when you need to use it out in the everyday world? While practicing is vital to learning and memory, studies have shown that practice is far more effective when it’s broken into separate periods of training that are spaced out. The rapid gains produced by massed practice are often evident, but the rapid forgetting that follows is not. Practice that’s spaced out, interleaved with other learning, and varied produces better mastery, longer retention, and more versatility. But these benefits come at a price: when practice is spaced, interleaved, and varied, it requires more effort. You feel the increased effort, but not the benefits the effort produces. Learning feels slower from this kind of practice, and you don’t get the rapid improvements and affirmations you’re accustomed to seeing from massed practice. Even in studies where the participants have shown superior results from spaced learning, they don’t perceive the improvement; they believe they learned better on the material where practice was massed.

Almost everywhere you look, you find examples of massed practice: colleges that offer concentration in a single subject with the promise of fast learning, continuing education seminars for professionals where training is condensed into a single weekend. Cramming for exams is a form of massed practice. It feels like a productive strategy, and it may get you through the next day’s midterm, but most of the material will be long forgotten by the time you sit down for the final. Spacing out your practice feels less productive for the very reason that some forgetting has set in and you’ve got to work harder to recall the concepts. It doesn’t feel like you’re on top of it. What you don’t sense in the moment is that this added effort is making the learning stronger.

Spaced Practice

The benefits of spacing out practice sessions are long established, but for a vivid example consider this study of thirty-eight surgical residents. They took a series of four short lessons in microsurgery: how to reattach tiny vessels. Each lesson included some instruction followed by some practice. Half the docs completed all four lessons in a single day, which is the normal in-service schedule. The others completed the same four lessons but with a week’s interval between them.

Interleaved Practice

Interleaving the practice of two or more subjects or skills is also a more potent alternative to massed practice, and here’s a quick example of that. Two groups of college students were taught how to find the volumes of four obscure geometric solids (wedge, spheroid, spherical cone, and half cone). One group then worked a set of practice problems that were clustered by problem type (practice four problems for computing the volume of a wedge, then four problems for a spheroid, etc.). The other group worked the same practice problems, but the sequence was mixed (interleaved) rather than clustered by type of problem. Given what we’ve already presented, the results may not surprise you. During practice, the students who worked the problems in clusters (that is, massed) averaged 89 percent correct, compared to only 60 percent for those who worked the problems in a mixed sequence. But in the final test a week later, the students who had practiced solving problems clustered by type averaged only 20 percent correct, while the students whose practice was interleaved averaged 63 percent. The mixing of problem types, which boosted final test per for mance by a remarkable 215 percent, actually impeded performance during initial learning.

Varied Practice

Okay, what about the beanbag study where the kids who did best had never practiced the three-foot toss that the other kids had only practiced?

http://www.salon.com/2014/04/20/ditch_the_10000_hour_rule_why_malcolm_gladwells_famous_advice_falls_short/

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.