Genesis of the Universe

 

 

A Universe from Nothing: Einstein, the Belgian Priest and the Puzzle of the Big Bang

An excerpt from physicist Lawrence M. Krauss’s new book explains why we are not the center of the universe

By Lawrence M. Krauss | February 10, 2012 |25

 

Image: COURTESY OF SIMON & SCHUSTER

[Editors’ note: The following is an excerpt from theoretical physicist Lawrence M. Krauss’s new book, A Universe from Nothing: Why There Is Something Rather Than Nothing (Free Press, 2012).]

It was a dark and stormy night.

Early in 1916, Albert Einstein had just completed his greatest life’s work, a decade-long, intense intellectual struggle to derive a new theory of gravity, which he called the general theory of relativity. This was not just a new theory of gravity, however; it was a new theory of space and time as well. And it was the first scientific theory that could explain not merely how objects move through the universe, but also how the universe itself might evolve.

There was just one hitch, however. When Einstein began to apply his theory to describing the universe as a whole, it became clear that the theory didn’t describe the universe in which we apparently lived.

Now, almost one hundred years later, it is difficult to fully appreciate how much our picture of the universe has changed in the span of a single human lifetime. As far as the scientific community in 1917 was concerned, the universe was static and eternal, and consisted of a single galaxy, our Milky Way, surrounded by a vast, infinite, dark, and empty space. This is, after all, what you would guess by looking up at the night sky with your eyes, or with a small telescope, and at the time there was little reason to suspect otherwise.

In Einstein’s theory, as in Newton’s theory of gravity before it, gravity is a purely attractive force between all objects. This means that it is impossible to have a set of masses located in space at rest forever. Their mutual gravitational attraction will ultimately cause them to collapse inward, in manifest disagreement with an apparently static universe.

The fact that Einstein’s general relativity didn’t appear consistent with the then picture of the universe was a bigger blow to him than you might imagine, for reasons that allow me to dispense with a myth about Einstein and general relativity that has always bothered me. It is commonly assumed that Einstein worked in isolation in a closed room for years, using pure thought and reason, and came up with his beautiful theory, independent of reality (perhaps like some string theorists nowadays!). However, nothing could be further from the truth.

Einstein was always guided deeply by experiments and observations. While he performed many “thought experiments” in his mind and did toil for over a decade, he learned new mathematics and followed many false theoretical leads in the process before he ultimately produced a theory that was indeed mathematically beautiful. The single most important moment in establishing his love affair with general relativity, however, had to do with observation. During the final hectic weeks that he was completing his theory, competing with the German mathematician David Hilbert, he used his equations to calculate the prediction for what otherwise might seem an obscure astrophysical result: a slight precession in the “perihelion” (the point of closest approach) of Mercury’s orbit around the Sun.

Astronomers had long noted that the orbit of Mercury departed slightly from that predicted by Newton. Instead of being a perfect ellipse that returned to itself, the orbit of Mercury precessed (which means that the planet does not return precisely to the same point after one orbit, but the orientation of the ellipse shifts slightly each orbit, ultimately tracing out a kind of spiral-like pattern) by an incredibly small amount: 43 arc seconds (about 1⁄100 of a degree) per century.

When Einstein performed his calculation of the orbit using his theory of general relativity, the number came out just right. As described by an Einstein biographer, Abraham Pais: “This discovery was, I believe, by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life.” He claimed to have heart palpitations, as if “something had snapped” inside. A month later, when he described his theory to a friend as one of “incomparable beauty,” his pleasure over the mathematical form was indeed manifest, but no palpitations were reported.

The apparent disagreement between general relativity and observation regarding the possibility of a static universe did not last long, however. (Even though it did cause Einstein to introduce a modification to his theory that he later called his biggest blunder. But more about that later.) Everyone (with the exception of certain school boards in the United States) now knows that the universe is not static but is expanding and that the expansion began in an incredibly hot, dense Big Bang approximately 13.72 billion years ago. Equally important, we know that our galaxy is merely one of perhaps 400 billion galaxies in the observable universe. We are like the early terrestrial mapmakers, just beginning to fully map the universe on its largest scales. Little wonder that recent decades have witnessed revolutionary changes in our picture of the universe.

The discovery that the universe is not static, but rather expanding, has profound philosophical and religious significance, because it suggested that our universe had a beginning. A beginning implies creation, and creation stirs emotions. While it took several decades following the discovery in 1929 of our expanding universe for the notion of a Big Bang to achieve independent empirical confirmation, Pope Pius XII heralded it in 1951 as evidence for Genesis. As he put it:

It would seem that present-day science, with one sweep back across the centuries, has succeeded in bearing witness to the august instant of the primordial Fiat Lux [Let there be Light], when along with matter, there burst forth from nothing a sea of light and radiation, and the elements split and churned and formed into millions of galaxies. Thus, with that concreteness which is characteristic of physical proofs [science] has confirmed the contingency of the universe and also the well-founded deduction as to the epoch when the world came forth from the hands of the Creator. Hence, creation took place. We say: “Therefore, there is a Creator. Therefore, God exists!”

The full story is actually a little more interesting. In fact, the first person to propose a Big Bang was a Belgian priest and physicist named Georges Lemaître. Lemaître was a remarkable combination of proficiencies. He started his studies as an engineer, was a decorated artilleryman in World War I, and then switched to mathematics while studying for the priesthood in the early 1920s. He then moved on to cosmology, studying first with the famous British astrophysicist Sir Arthur Stanley Eddington before moving on to Harvard and eventually receiving a second doctorate, in physics from MIT.

In 1927, before receiving his second doctorate, Lemaître had actually solved Einstein’s equations for general relativity and demonstrated that the theory predicts a nonstatic universe and in fact suggests that the universe we live in is expanding. The notion seemed so outrageous that Einstein himself colorfully objected with the statement “Your math is correct, but your physics is abominable.”

Nevertheless, Lemaître powered onward, and in 1930 he further proposed that our expanding universe actually began as an infinitesimal point, which he called the “Primeval Atom” and that this beginning represented, in an allusion to Genesis perhaps, a “Day with No Yesterday.”

Thus, the Big Bang, which Pope Pius so heralded, had first been proposed by a priest. One might have thought that Lemaître would have been thrilled with this papal validation, but he had already dispensed in his own mind with the notion that this scientific theory had theological consequences and had ultimately removed a paragraph in the draft of his 1931 paper on the Big Bang remarking on this issue.

Lemaître in fact later voiced his objection to the pope’s 1951 claimed proof of Genesis via the Big Bang (not least because he realized that if his theory was later proved incorrect, then the Roman Catholic claims for Genesis might be contested). By this time, he had been elected to the Vatican’s Pontifical Academy, later becoming its president. As he put it, “As far as I can see, such a theory remains entirely outside of any metaphysical or religious question.” The pope never again brought up the topic in public.

There is a valuable lesson here. As Lemaître recognized, whether or not the Big Bang really happened is a scientific question, not a theological one. Moreover, even if the Big Bang had happened (which all evidence now overwhelmingly supports), one could choose to interpret it in different ways depending upon one’s religious or metaphysical predilections. You can choose to view the Big Bang as suggestive of a creator if you feel the need or instead argue that the mathematics of general relativity explain the evolution of the universe right back to its beginning without the intervention of any deity. But such a metaphysical speculation is independent of the physical validity of the Big Bang itself and is irrelevant to our understanding of it. Of course, as we go beyond the mere existence of an expanding universe to understand the physical principles that may address its origin, science can shed further light on this speculation and, as I shall argue, it does.

In any case, neither Lemaître nor Pope Pius convinced the scientific world that the universe was expanding. Rather, as in all good science, the evidence came from careful observations, in this case done by Edwin Hubble, who continues to give me great faith in humanity, because he started out as a lawyer and then became an astronomer.

Hubble had earlier made a significant breakthrough in 1925 with the new Mount Wilson 100-inch Hooker telescope, then the world’s largest. (For comparison, we are now building telescopes more than ten times bigger than this in diameter and one hundred times bigger in area!) Up until that time, with the telescopes then available, astronomers were able to discern fuzzy images of objects that were not simple stars in our galaxy. They called these nebulae, which is basically Latin for “fuzzy thing” (actually “cloud”). They also debated whether these objects were in our galaxy or outside of it.

Since the prevailing view of the universe at the time was that our galaxy was all that there was, most astronomers fell in the “in our galaxy” camp, led by the famous astronomer Harlow Shapley at Harvard. Shapley had dropped out of school in fifth grade and studied on his own, eventually going to Princeton. He decided to study astronomy by picking the first subject he found in the syllabus to study. In seminal work he demonstrated that the Milky Way was much larger than previously thought and that the Sun was not at its center but simply in a remote, uninteresting corner. He was a formidable force in astronomy and therefore his views on the nature of nebulae held considerable sway.

On New Year’s Day 1925, Hubble published the results of his two-year study of so-called spiral nebulae, where he was able to identify a certain type of variable star, called a Cepheid variable star, in these nebulae, including the nebula now known as Andromeda.

First observed in 1784, Cepheid variable stars are stars whose brightness varies over some regular period. In 1908, an unheralded and at the time unappreciated would-be astronomer, Henrietta Swan Leavitt, was employed as a “computer” at the Harvard College Observatory. (“Computers” were women brought in to catalogue the brightness of stars recorded on the observatory’s photographic plates; women were not allowed to use the observatory telescopes at the time.) Daughter of a Congregational minister and a descendant of the Pilgrims, Leavitt made an astounding discovery, which she further illuminated in 1912: she noticed that there was a regular relationship between the brightness of Cepheid stars and the period of their variation. Therefore, if one could determine the distance to a single Cepheid of a known period (subsequently determined in 1913), then measuring the brightness of other Cepheids of the same period would allow one to determine the distance to these other stars!

Since the observed brightness of stars goes down inversely with the square of the distance to the star (the light spreads out uniformly over a sphere whose area increases as the square of the distance, and thus since the light is spread out over a bigger sphere, the intensity of the light observed at any point decreases inversely with the area of the sphere), determining the distance to faraway stars has always been the major challenge in astronomy. Leavitt’s discovery revolutionized the field. (Hubble himself, who was snubbed for the Nobel Prize, often said Leavitt’s work deserved the prize, although he was sufficiently self-serving that he might have suggested it only because he would have been a natural contender to share the prize with her for his later work.) Paperwork had actually begun in the Royal Swedish Academy to nominate Leavitt for the Nobel in 1924 when it was learned that she had died of cancer three years earlier. By dint of his force of personality, knack for self-promotion, and skill as an observer, Hubble would become a household name, while Leavitt, alas, is known only to aficionados of the field.

Hubble was able to use his measurement of Cepheids and Leavitt’s period-luminosity relation to prove definitively that the Cepheids in Andromeda and several other nebulae were much too distant to be inside the Milky Way. Andromeda was discovered to be another island universe, another spiral galaxy almost identical to our own, and one of the more than 100 billion other galaxies that, we now know, exist in our observable universe. Hubble’s result was sufficiently unambiguous that the astronomical community—including Shapley, who, incidentally, by this time had become director of the Harvard College Observatory, where Leavitt had done her groundbreaking work—quickly accepted the fact that the Milky Way is not all there is around us. Suddenly the size of the known universe had expanded in a single leap by a greater amount than it had in centuries! Its character had changed, too, as had almost everything else.

After this dramatic discovery, Hubble could have rested on his laurels, but he was after bigger fish or, in this case, bigger galaxies. By measuring ever fainter Cepheids in ever more distant galaxies, he was able to map the universe out to ever-larger scales. When he did, however, he discovered something else that was even more remarkable: the universe is expanding!

Hubble achieved his result by comparing the distances for the galaxies he measured with a different set of measurements from another American astronomer, Vesto Slipher, who had measured the spectra of light coming from these galaxies. Understanding the existence and nature of such spectra requires me to take you back to the very beginning of modern astronomy.

One of the most important discoveries in astronomy was that star stuff and Earth stuff are largely the same. It all began, as did many things in modern science, with Isaac Newton. In 1665, Newton, then a young scientist, allowed a thin beam of sunlight, obtained by darkening his room except for a small hole he made in his window shutter, through a prism and saw the sunlight disperse into the familiar colors of the rainbow. He reasoned that white light from the sun contained all of these colors, and he was correct.

A hundred fifty years later, another scientist examined the dispersed light more carefully, discovered dark bands amidst the colors, and reasoned that these were due to the existence of materials in the outer atmosphere of the sun that were absorbing light of certain specific colors or wavelengths. These “absorption lines,” as they became known, could be identified with wavelengths of light that were measured to be absorbed by known materials on Earth, including hydrogen, oxygen, iron, sodium, and calcium.

In 1868, another scientist observed two new absorption lines in the yellow part of the solar spectrum that didn’t correspond to any known element on Earth. He decided this must be due to some new element, which he called helium. A generation later, helium was first isolated on Earth.

Looking at the spectrum of radiation coming from other stars is an important scientific tool for understanding their composition, temperature, and evolution. Starting in 1912, Slipher observed the spectra of light coming from various spiral nebulae and found that the spectra were similar to those of nearby stars—except that all of the absorption lines were shifted by the same amount in wavelength.

This phenomenon was by then understood as being due to the familiar “Doppler effect,” named after the Austrian physicist Christian Doppler, who explained in 1842 that waves coming at you from a moving source will be stretched if the source is moving away from you and compressed if it is moving toward you. This is a manifestation of a phenomenon we are all familiar with, and by which I am usually reminded of a Sidney Harris cartoon where two cowboys sitting on their horses out in the plains are looking at a distant train, and one says to the other, “I love hearing that lonesome wail of the train whistle as the magnitude of the frequency changes due to the Doppler effect!” Indeed, a train whistle or an ambulance siren sounds higher if the train or ambulance is moving toward you and lower if it is moving away from you.

It turns out that the same phenomenon occurs for light waves as sound waves, although for somewhat different reasons. Light waves from a source moving away from you, either due to its local motion in space or due to the intervening expansion of space, will be stretched, and therefore appear redder than they would otherwise be, since red is the long-wavelength end of the visible spectrum, while waves from a source moving toward you will be compressed and appear bluer.

Slipher observed in 1912 that the absorption lines from the light coming from all the spiral nebulae were almost all shifted systematically toward longer wavelengths (although some, like Andromeda, were shifted toward shorter wavelengths). He correctly inferred that most of these objects therefore were moving away from us with considerable velocities.

Hubble was able to compare his observations of the distance of these spiral galaxies (as they were by now known to be) with Slipher’s measurements of the velocities by which they were moving away. In 1929, with the help of a Mount Wilson staff member, Milton Humason (whose technical talent was such that he had secured a job at Mount Wilson without even having a high school diploma), he announced the discovery of a remarkable empirical relationship, now called Hubble’s law: There is a linear relationship between recessional velocity and galaxy distance. Namely, galaxies that are ever more distant are moving away from us with faster velocities!

When first presented with this remarkable fact—that almost all galaxies are moving away from us, and those that are twice as far away are moving twice as fast, those that are three times away three times as fast, etc.—it seems obvious what this implies: We are the center of the universe!

As some friends suggest, I need to be reminded on a daily basis that this is not the case. Rather, it was consistent with precisely the relationship that Lemaître had predicted. Our universe is indeed expanding.

From UNIVERSE FROM NOTHING: Why There Is Something Rather than Nothing by Lawrence M. Krauss. Copyright © 2012 by Lawrence M. Krauss. Reprinted with permission by Free Press, a Division of Simon & Schuster, Inc.

 

 

 

Why The West Craves Materialism & Why The East Sticks To Religion

This article by Imran Khan appeared on Arab News; a leading English daily in Saudi Arabia – an eye opener which communicates real feelings of many a true Muslims in these trying times 

THE PAKISTANI CRICKETER IMRAN KHAN (Currently a vibrant politician of his country)
Why The West Craves Materialism &  Why The East Sticks To Religion
by Imran Khan

My generation grew up at a time when colonial hang up was at its peak. Our older generation had been slaves and had a huge inferiority complex of the British. The school I went  to was similar to all elite schools in Pakistan.

Despite gaining independence, they were, and still are, producing replicas of public schoolboys rather than Pakistanis.I read Shakespeare, which was fine, but no Allama Iqbal – the national poet of Pakistan. The class on Islamic studies was not taken seriously, and when I left school I was  considered among the elite of the country because I could speak English and wore Western clothes.

Despite periodically shouting ‘Pakistan Zindabad’  in school functions, I considered my own culture backward
and religion outdated. Among our group if any one talked about religion, prayed or kept a beard he was immediately branded a Mullah.

Because of the power of the Western media, our heroes were  Western movie stars or pop stars. When I went to Oxford already burdened with this hang up, things didn’t get any easier. At Oxford, not just Islam, but all religions were considered anachronism.

Science had replaced religion and if something couldn’t be logically proved it did not exist. All supernatural stuff
was confined to the movies. Philosophers like Darwin, who with his half-baked theory of evolution had supposedly
disproved the creation of men and hence religion, were read and revered.

Moreover, European history reflected its awful experience with religion. The horrors committed by the Christian clergy during the Inquisition era had left a powerful impact on the Western mind.

To understand why the West is so keen on secularism, one should go to places like Cordoba in Spain and see the torture apparatus used during the Spanish Inquisition. Also the persecution of scientists as heretics by the clergy had convinced the Europeans that all religions are regressive.

However, the biggest factor that drove people like me away from religion was the selective Islam practiced by most of its preachers. In short, there was a huge difference between what they practiced and what they preached. Also, rather than explaining the philosophy behind the religion, there was an overemphasis on rituals.

I feel that humans are different to animals. While, the latter can be drilled, humans need to be intellectually
convinced. That is why the Qur’an constantly appeals to reason. The worst, of course, was the exploitation of Islam for political gains by various individuals or groups.

Hence, it was a miracle I did not become an atheist. The only reason why I did not was the powerful religious
influence my mother wielded on me since my childhood. It was not so much out of conviction but love for her that I stayed a Muslim.

However, my Islam was selective. I accepted only parts of the religion that suited me. Prayers were restricted to Eid days and occasionally on Fridays, when my father insisted on taking me to the mosque with him.

All in all I was smoothly moving to becoming a pukka Brown Sahib. After all I had the right credentials in terms of
school, university and, above all, acceptability in the English aristocracy, something that our brown sahibs would
give their lives for. So what led me to do a ‘lota’ on the Brown Sahib culture and instead become a ‘desi’?

Well it did not just happen overnight.

Firstly, the inferiority complex that my generation had  inherited gradually went as I developed into a world-class
athlete. Secondly, I was in the unique position of living between two cultures. I began to see the advantages and the disadvantages of both societies.

In Western societies, institutions were strong while they were collapsing in our country. However, there was an area where we were and still are superior, and that is our family life. I began to realize that this was the Western
society’s biggest loss. In trying to free itself from the oppression of the clergy, they had removed both God and
religion from their lives.

While science, no matter how much it progresses, can answer a lot of questions – two questions it will never be able to answer: One, what is the purpose of our existence; and two, what happens to us when we die?

It is this vacuum that I felt created the materialistic and the hedonistic culture. If this is the only life then one
must make hay while the sun shines – and in order to do so one needs money. Such a culture is bound to cause
psychological problems in a human being, as there was going to be an imbalance between the body and the soul.

Consequently, in the US, which has shown the greatest materialistic progress while giving its citizens numerous
rights, almost 60 percent of the population consult psychiatrists. Yet, amazingly in modern psychology, there is
no study of the human soul. Sweden and Switzerland, who provide the most welfare to their citizens, also have the highest suicide rates. Hence, man is not necessarily content with material well being and needs something more.

Since all morality has it roots in religion, once religion was removed, immorality has progressively grown since the
70s. Its direct impact has been on family life. In the UK the divorce rate is 60 percent, while it is estimated that
there are over 35 percent single mothers. The crime rate is rising in almost all Western societies, but the most
disturbing fact is the alarming increase in racism. While science always tries to prove the inequality of man (recent survey showing the American Black to be genetically less intelligent than whites) it is only religion that preaches the equality of man. Between 1991 and 1997, it was estimated that total immigration into Europe was around 520,000, and there were racially motivated attacks all over, especially in Britain, France and Germany. In Pakistan during the Afghan war, we had over four million refugees, and despite the people being so much poorer, there was no racial tension.

There was a sequence of events in the 80s that moved me toward God as the Qur’an says: ‘There are signs for
people of understanding.’ One of them was cricket. As I was a student of the game, the more I understood the game, the more I began to realize that what I considered to be chance was, in fact, the will of Allah. A pattern which became clearer with time. But it was not until Salman Rushdie’s ‘Satanic Verses’ that my understanding
of Islam began to develop.

People like me who were living in the Western world bore the brunt of anti-Islam prejudice that followed the Muslim reaction to the book. We were left with two choices: fight or flight. Since I felt strongly that the attacks on Islam were unfair, I decided to fight. It was then I realized that I was not equipped to do so as my knowledge of Islam was inadequate. Hence I started my research and for me a period of my greatest enlightenment. I read scholars like Ali Shariati, Muhammad Asad, Iqbal, Gai Eaton, plus of course, a study of Qur’an.

I will try to explain as concisely as is possible, what ‘discovering the truth’ meant for me. When the
believers are addressed in the Qur’an, it always says ‘Those who believe and do good deeds.’ In other
words, a Muslim has dual function, one toward God and the other toward fellow human beings.

The greatest impact of believing in God for me, meant that I lost all fear of human beings. The Qur’an liberates
man from man when it says that life and death and respect and humiliation are God’s jurisdiction, so we do not
have to bow before other human beings.

Moreover, since this is a transitory world where we prepare for the eternal one, I broke out of the self-imposed
prisons, such as growing old (such a curse in the Western world, as a result of which, plastic surgeons are having a field day), materialism, ego, what people say and so on. It is important to note that one does not eliminate earthly desires. But instead of being controlled by them, one controls them.

By following the second part of believing in Islam, I have become a better human being. Rather than being self-centered and living for the self, I feel that because the Almighty gave so much to me, in turn I must use that blessing to help the less privileged. This I did by following the fundamentals of Islam rather than becoming a Kalashnikov-wielding fanatic.

I have become a tolerant and a giving human being who feels  compassion for the underprivileged. Instead of attributing success to myself, I know it is because of God’s will, hence I learned humility instead of arrogance.

Also, instead of the snobbish Brown Sahib attitude toward our masses, I believe in egalitarianism and strongly feel against the injustice done to the weak in our society. According to the Qur’an, ‘Oppression is worse than
killing.’ In fact only now do I understand the true meaning of Islam, if you submit to the will of Allah, you
have inner peace. Through my faith, I have discovered strength within me that I never knew existed and that has

released my potential in life. I feel that in Pakistan we have selective Islam. Just believing in God and going through the rituals is not enough. One also has to be a good human being. I feel there are certain Western countries with far more Islamic traits than us in Pakistan, especially in the way they protect the rights of their citizens, or for that matter their justice system. In fact some of the finest individuals I know live there.

What I dislike about them is their double standards in the way they protect the rights of their citizens but consider
citizens of other countries as being somehow inferior to them as human being, e.g. dumping toxic waste in the Third World, advertising cigarettes that are not allowed in the West and selling drugs that are banned in the West.

One of the problems facing Pakistan is the polarization of two reactionary groups. On the one side is the Westernized group that looks upon Islam through Western eyes and has inadequate knowledge about the subject. It reacts strongly to anyone trying to impose Islam in society and wants only a selective part of the religion. On the other extreme is the group that reacts to this Westernized elite and in trying to become a defender of the faith, takes up such intolerant and self-righteous attitudes that are repugnant to the spirit of Islam.

What needs to be done is to somehow start a dialogue between the two extreme. In order for this to happen, the
group on whom the greatest proportion of our educational resources are spent in this country must study Islam properly. Whether they become practicing Muslims or believe in God is entirely a personal choice. As the Qur’an tells us there is ‘no compulsion in religion.’ However, they must arm themselves with knowledge as a weapon to fight extremism.Just by turning up their noses at extremism the problem is not going to be solved.

The Qur’an calls Muslims ‘the middle nation’, not of extremes. The Holy Prophet (peace be upon him) was told to

simply give the message and not worry whether people converted or not, therefore, there is no question in Islam
of forcing your opinions on anyone else.

Moreover, we are told to respect other religions, their places of worship and their prophets. It should be noted
that no Muslim missionaries or armies ever went to Malaysia or Indonesia. The people converted to Islam due to the high principles and impeccable character of the Muslim traders. At the moment, the worst advertisements for Islam are the countries with their selective Islam, especially where religion is used to deprive people of their rights. In fact, a society that obeys fundamentals of Islam has to be a liberal one.

If Pakistan’s Westernized class starts to study Islam, not only will it be able to help society fight sectarianism and extremism, but it will also make them realize what a progressive religion Islam is. They will also be able to help the Western world by articulating Islamic concepts. Recently, Prince Charles accepted that the Western world can learn from Islam. But how can this happen if the group that is in the best position to project Islam gets its attitudes from the West and considers Islam backward? Islam is a universal religion and that is why our Prophet (peace be upon him) was called a Mercy for all mankind.

 

 

Blog Suggestions And Comments

Lets not overload the project.  Drs. Fayyaz, Shoeb and Noor have given us a fair start.  The challenge is to build a sufficient core and mission.  Links can always be made at any time and pictures can be changed.  The forum has to retain a focus lest we drown it with too much content and little substance.
Nasik

Excellent site. Congrats to Dr. Fayyaz Sheikh.